Question	Answer	Mark	Commer	nts	
1(a)	120 and 132 and 96 and 156 and states that 4 out of 5 would be above 100 or 8.3 and states that 4 out of 5 would be above 100 or 10.4 × 12 = 124.8 and states this is above 100 or the hypothesis is correct or median or mode = 10 and 10 × 12 = 120 and states that median or mode is above 100 or 52 × 12 (= 624) and 5 × 100 (= 500) and states 624 > 500	B2	B1 10 × 12 or 120 and 11 × 12 or 132 and 8 × 12 or 96 and 13 × 12 or 156 or 100 ÷ 12 or 8.3 or states that 4 out of 5 wo with no or incorrect eval or 10.4 × 12 = 124.8 or median or mode = 10 ar or 52 × 12 (= 624) and 5 ×	nd 10 × 12 = 120	
	Additional Guidance				
	'4 out of 5' is implied by 'most people				
	(10 + 11 + 8 + 10 + 13) ÷ 5 = 10.4	В0			
	52 × 12 or 624 alone			В0	

1(b)	Any two correct reasons from The sample is biased The sample is too small They may not read at the same rate in other months	B2	oe eg people in book clubs read more books eg she should ask a lot more people eg that month may not be representative B1 any one correct reason	
	Additional Guidance			
	Needs to use data from more months			B1
	The results of just 5 people used			B1

Q	Answer	Mark	Comments		
	Sometimes true Always true Always true Never true	B4	B1 for each		
	Additional Guidance				
2	Allow any unambiguous indication eg all 4 correct boxes contain a cross with all other boxes blank			B4	
	A row with one tick and some crosses				
	A row with more than one tick is B0 for that row				
	Mark the boxes not the working lines				

Q	Answer	Mark	Comment
3	15	B1	

Q	Answer		Mark	Comment		
	8 1 16 2	1 1	1/2 16 1/8	B2	oe values eg 0.0625 for condone unprocessed values eg for 8 allow $\frac{16}{2}$ or $\frac{8}{1}$. B1 at least three of the expression of 1 do not count rows, column that only have ones do not count incomplete or diagonals.	alues eight rows, have a nns or diagonals
	Additional Guidance					
	If decimal values are used they must be exact					
	The given values in the grid cannot be changed					
4	B1 can be a	awarded with	an incomple	ete grid eg	ı	
	<u>1</u>	1				B1
	2	4	<u>1</u> 8			
		1				
	1	4	1	Three		
	1	1	1/2	Three products of 1 but two are not counted as they only have ones		B0
	1	4	1 8			

Q	Answer	Mark	Comments		
	$4 \times 3 \times 2 \times 1 \times 2$ or $5 \times 4 \times 3 \times 2 \times 1 \times \frac{2}{5}$ or $120 \times \frac{2}{5}$	M1	oe		
	48	A 1	SC1 12 or 24 or 72 or 12	20	
5	Additional Guidance				
	12 is the number of possible 5-digit numbers ending in two odd digits				
	24 is the number of possible 5-digit nor the number of possible 5-digit num		-		
	72 is the number of possible 5-digit even numbers				
	120 is the number of possible 5-digit numbers				
	Ignore any listing of possible numbers				

Q	Answer	Mark	Comments	;	
	$2k^2 + 3 - (9k + 7) (= 1)$ or $2k^2 - 9k - 4 (= 1)$	M1	oe eg $9k + 7 + 1 = 2k^2 + 3$ or $9k + 8 = 2k^2 + 3$		
	$2k^2 - 9k - 5 (= 0)$	A1	terms in any order implied by $k = 5$ (and $-\frac{1}{2}$) or correct answer		
	$(2k+1)(k-5) (= 0)$ or $(k=) \frac{9 \pm \sqrt{9^2 - 4 \times 2 \times -5}}{2 \times 2}$ or $(k=) \frac{9 \pm \sqrt{121}}{4}$ or $(k=) 2.25 \pm \sqrt{7.5625}$	M1	oe correct factorisation or correct use of quadratic formula or correct use of completing the squar for their 3-term quadratic		
6(a)	$(k=) 5 \text{ (or } -\frac{1}{2})$	A1ft	ft at least one solution for their 3-term quadratic implied by correct answer		
	54	A1			
	Additional Guidance				
	Answer 54 not from incorrect working	5 marks			
	Trial and improvement scores 0 or 5				
	Use of inequalities can score up to M				
	Condone 52, 53, 54 on answer line	5 marks			
	54 and 4.5	4 marks			
	$2k^2 + 3 - 9k + 7 (= 1)$	MO			
	$2k^2 - 9k + 9 (= 0)$	A0			
	(2k-3)(k-3) (= 0) $k = 3$ (or $\frac{3}{2}$)	M1			
	$k = 3 \text{ (or } \frac{3}{2}\text{)}$			A1ft	
	22			A0	

Q	Answer	Mark	Comments			
	Alternative method 1					
	$\left(\sqrt{x}+1\right)^2$ or $\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)$	M1				
	$\left(\sqrt{x}+1\right)^2$ or $\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)$ and $x+\sqrt{x}+\sqrt{x}+1$ $=x+2\sqrt{x}+1$	A1	SC1 takes any square number and shows that $x + 2\sqrt{x} + 1$ gives the nex square number			
	Alternative method 2					
	$x = n^2$	M1	any letter for n except x			
	$(n+1)^2 = n^2 + 2n + 1$ $= x + 2\sqrt{x} + 1$	A1	SC1 takes any square number and shows that $x + 2\sqrt{x} + 1$ gives the next square number			
6(b)	Alternative method 3					
	$x = n^2$	M1	any letter for n except x			
	$n^2 + 2\sqrt{n^2} + 1 = n^2 + 2n + 1$ and $(n+1)^2$	A1	SC1 takes any square number and shows that $x + 2\sqrt{x} + 1$ gives the next square number			
	Additional Guidance					
	Remember that the answer is given in the question					
	eg for SC1 $x = 9, 9 + 2 \times 3 + 1 = 16$			SC1		
	Allow $x^{\frac{1}{2}}$ for \sqrt{x} throughout					
	If only multiplication in a grid is seen then this is not sufficient for A1					